Chapter1 动力学
1.1 Newton's Laws
Drag(阻力)
$$R=bv$$
Note
This assumption is valid for objects falling slowly through a liquid and for very small objects, such as dust particles, moving through air.
$$R=cv^2$$
Note
This assumption is valid for large and fast moving objects, such as a skydiver moving through air in free fall.
Scaling
Center-of-mass Frame(质心系)
In the center-of-mass frame, the total momentum is always zero.
Proof
$\vec{v}{CM}=\frac{\sum m_i\vec{v}_i}{M}$
$\vec{p}''}=\sum m_i\vec{vi=\sum m_i(\vec{v}_i-\vec{v})$
$=\sum m_i\vec{v}i-\sum m_i\vec{v}$
$=M\vec{v}{CM}-M\vec{v}$
$=0$
König’s theorem(柯尼希定理)
$$E_k=\frac{1}{2}Mv_{CM}^2+\sum\frac{1}{2}m_iv_i'^2$$
The total kinetic energy equals the kinetic energy of center-of-mass plus the kinetic energy in the center-of-mass frame.(总动能等于质心的动能加质心系下的总动能)
Gravitational Potential Energy(引力势能)
总机械能:
$$E=\frac{1}{2}mv^2-\frac{GMm}{r}=-\frac{GMm}{2r}$$
如果是椭圆轨道:$E=-\frac{GMm}{2a}$,其中$a$为椭圆的半长轴
Thrust(推力)
对于水平火箭发射:
$$(M+\Delta m)v=M(v+\Delta v)+\Delta m(v-v_e)$$
$$M\Delta v=v_e\Delta m$$
$$Mdv=-v_edM$$
$$F_{Thrust}=M\frac{dv}{dt}=|v_e\frac{dM}{dt}|$$
1.2 Rotations
Angular displacement(角位移)
$$\Delta\theta=\theta_f-\theta_i$$
Note
Finite angular displacement is not a vector.
Angular speed(角速度)
$$\omega=\frac{d\theta}{dt}$$
Units: $rad/s$ or $s^{-1}$ Direction: positive for counterclockwise motion(逆时针)
Angular acceleration(角加速度)
$$\alpha=\frac{d\omega}{dt}$$
Units: $rad/s^2$ or $s^{-2}$ Direction: positive when the rate of counterclockwise rotation is increasing
Note
When rotating about a fixed axis, every particle on a rigid object rotates through the same angle and has the same angular speed and the same angular acceleration.
For rotation about a fixed axis, the only direction that uniquely specifies the rotational motion is the direction along the axis of rotation. Therefore, the directions of $\omega$ and $\alpha$ are along this axis. They obey the Right-Hand Rule.
Rotational kinematics(旋转动力学)
$$\omega_f=\omega_i+\alpha t$$
$$\theta_f=\theta_i+\omega_i t+\frac{1}{2}\alpha t^2$$
$$\omega_f^2-\omega_i^2=2\alpha(\theta_f-\theta_i)$$
(Under constant angular acceleration)
Transformation between angular and linear vectors
$$v=\omega r~(\vec{v}=\vec{\omega}\times\vec{r})$$
$$a_{\bot}=r\omega^2$$
$$a_{//}=r\alpha$$
Torque(力矩)
$$\tau=Fd~(\vec{\tau}=\vec{r}\times\vec{F})
Note
$d$ is the perpendicular distance from the axis to the line of action of $F$; also called the moment arm(力臂) of F.
counterclockwise torque: positive; clockwise torque: negative
Moment of inertia(转动惯量)
$$\tau=I\alpha$$
$$I=mr^2$$
Rotational kinetic energy(转动动能)
$$K_R=\frac{1}{2}I\omega^2$$
Power in rotation(转动功率)
$$P=\tau\omega$$
Useful equations in rotational and linear motion
Parallel-Axis Theorem(平行轴定理)
$$I_P=I_{CM}+Md^2$$
Note
$I_P$: moment of inertia with respect to the axis crossing $P$.
$I_{CM}$:moment of inertia with respect to the axis crossing the center of mass.
$d$:the distance between $P$ and the center of mass.
Coriolis force(科里奥利力)
$$d\vec{r}|_I=d\vec{r}|_R+(\vec{\omega}\times\vec{r})dt$$
$$\frac{d\vec{r}}{dt}|_I=\frac{d\vec{r}}{dt}|_R+\vec{\omega}\times\vec{r}$$
$$\frac{d^2\vec{r}}{dt^2}|_I=[\frac{d}{dt}|_R+\vec{\omega}\times]^2\vec{r}=\frac{d^2\vec{r}}{dt^2}|_R+2\vec{\omega}\times\frac{d\vec{r}}{dt}|_R+\vec{\omega}\times(\vec{\omega}\times\vec{r})$$
$$\vec{F_R}=m\frac{d^2\vec{r}}{dt^2}|_R=m\frac{d^2\vec{r}}{dt^2}|_I-2m\vec{\omega}\times\frac{d\vec{r}}{dt}|_R-m\vec{\omega}\times(\vec{\omega}\times\vec{r})$$
$$=\vec{F_I}-2m\vec{\omega}\times\vec{v_R}-m\vec{\omega}\times(\vec{\omega}\times\vec{r})$$
If $\vec{r}\bot\vec{\omega}$:
$$\vec{F_R}=\vec{F_I}-2m\vec{\omega}\times\vec{v_R}+m\omega^2\vec{r}$$
Coriolis force(科里奥利力):
$$-2m\vec{\omega}\times\vec{v_R}$$
Centrifugal force(离心力):
$$m\omega^2\vec{r}$$
Pure rolling motion(纯滚动)
$$v_{CM}=R\omega$$
$$a_{CM}=r\alpha$$
$$K=\frac{1}{2}I_{CM}\omega^2+\frac{1}{2}Mv_{CM}^2=\frac{1}{2}I_P\omega^2$$
Note
$P$ is the point which is between the object and the surface, and it is at rest relative to the surface because slipping does not occur.
Angular momentum(角动量)
$$L=mvr\sin\theta=I\omega$$
Conservation of angular momentum(角动量守恒)
The total angular momentum of a system is constant in both magnitude and direction if the resultant external torque acting on the system is zero.