跳转至

Chapter1 动力学


1.1 Newton's Laws

Drag(阻力)

$$R=bv$$

Note

This assumption is valid for objects falling slowly through a liquid and for very small objects, such as dust particles, moving through air.

$$R=cv^2$$

Note

This assumption is valid for large and fast moving objects, such as a skydiver moving through air in free fall.

alt text

alt text

Scaling

alt text

Center-of-mass Frame(质心系)

In the center-of-mass frame, the total momentum is always zero.

Proof

$\vec{v}{CM}=\frac{\sum m_i\vec{v}_i}{M}$
$\vec{p}'
'}=\sum m_i\vec{vi=\sum m_i(\vec{v}_i-\vec{v})$
$=\sum m_i\vec{v}i-\sum m_i\vec{v}$
$=M\vec{v}{CM}-M\vec{v}$
$=0$

König’s theorem(柯尼希定理)

$$E_k=\frac{1}{2}Mv_{CM}^2+\sum\frac{1}{2}m_iv_i'^2$$

The total kinetic energy equals the kinetic energy of center-of-mass plus the kinetic energy in the center-of-mass frame.(总动能等于质心的动能加质心系下的总动能)

Gravitational Potential Energy(引力势能)

alt text

总机械能:

$$E=\frac{1}{2}mv^2-\frac{GMm}{r}=-\frac{GMm}{2r}$$

如果是椭圆轨道:$E=-\frac{GMm}{2a}$,其中$a$为椭圆的半长轴

Thrust(推力)

对于水平火箭发射:

$$(M+\Delta m)v=M(v+\Delta v)+\Delta m(v-v_e)$$

$$M\Delta v=v_e\Delta m$$

$$Mdv=-v_edM$$

$$F_{Thrust}=M\frac{dv}{dt}=|v_e\frac{dM}{dt}|$$


1.2 Rotations

Angular displacement(角位移)

$$\Delta\theta=\theta_f-\theta_i$$

Note

Finite angular displacement is not a vector.

Angular speed(角速度)

$$\omega=\frac{d\theta}{dt}$$

Units: $rad/s$ or $s^{-1}$ Direction: positive for counterclockwise motion(逆时针)

Angular acceleration(角加速度)

$$\alpha=\frac{d\omega}{dt}$$

Units: $rad/s^2$ or $s^{-2}$ Direction: positive when the rate of counterclockwise rotation is increasing

Note

When rotating about a fixed axis, every particle on a rigid object rotates through the same angle and has the same angular speed and the same angular acceleration.
For rotation about a fixed axis, the only direction that uniquely specifies the rotational motion is the direction along the axis of rotation. Therefore, the directions of $\omega$ and $\alpha$ are along this axis. They obey the Right-Hand Rule.

Rotational kinematics(旋转动力学)

$$\omega_f=\omega_i+\alpha t$$

$$\theta_f=\theta_i+\omega_i t+\frac{1}{2}\alpha t^2$$

$$\omega_f^2-\omega_i^2=2\alpha(\theta_f-\theta_i)$$

(Under constant angular acceleration)

Transformation between angular and linear vectors

$$v=\omega r~(\vec{v}=\vec{\omega}\times\vec{r})$$

$$a_{\bot}=r\omega^2$$

$$a_{//}=r\alpha$$

Torque(力矩)

$$\tau=Fd~(\vec{\tau}=\vec{r}\times\vec{F})

Note

$d$ is the perpendicular distance from the axis to the line of action of $F$; also called the moment arm(力臂) of F.

counterclockwise torque: positive; clockwise torque: negative

Moment of inertia(转动惯量)

$$\tau=I\alpha$$

$$I=mr^2$$

Rotational kinetic energy(转动动能)

$$K_R=\frac{1}{2}I\omega^2$$

alt text alt text

Power in rotation(转动功率)

$$P=\tau\omega$$

Useful equations in rotational and linear motion

alt text

Parallel-Axis Theorem(平行轴定理)

$$I_P=I_{CM}+Md^2$$

Note

$I_P$: moment of inertia with respect to the axis crossing $P$.
$I_{CM}$:moment of inertia with respect to the axis crossing the center of mass.
$d$:the distance between $P$ and the center of mass.

Coriolis force(科里奥利力)

$$d\vec{r}|_I=d\vec{r}|_R+(\vec{\omega}\times\vec{r})dt$$

$$\frac{d\vec{r}}{dt}|_I=\frac{d\vec{r}}{dt}|_R+\vec{\omega}\times\vec{r}$$

$$\frac{d^2\vec{r}}{dt^2}|_I=[\frac{d}{dt}|_R+\vec{\omega}\times]^2\vec{r}=\frac{d^2\vec{r}}{dt^2}|_R+2\vec{\omega}\times\frac{d\vec{r}}{dt}|_R+\vec{\omega}\times(\vec{\omega}\times\vec{r})$$

$$\vec{F_R}=m\frac{d^2\vec{r}}{dt^2}|_R=m\frac{d^2\vec{r}}{dt^2}|_I-2m\vec{\omega}\times\frac{d\vec{r}}{dt}|_R-m\vec{\omega}\times(\vec{\omega}\times\vec{r})$$

$$=\vec{F_I}-2m\vec{\omega}\times\vec{v_R}-m\vec{\omega}\times(\vec{\omega}\times\vec{r})$$

If $\vec{r}\bot\vec{\omega}$:

$$\vec{F_R}=\vec{F_I}-2m\vec{\omega}\times\vec{v_R}+m\omega^2\vec{r}$$

Coriolis force(科里奥利力):

$$-2m\vec{\omega}\times\vec{v_R}$$

Centrifugal force(离心力):

$$m\omega^2\vec{r}$$

Pure rolling motion(纯滚动)

$$v_{CM}=R\omega$$

$$a_{CM}=r\alpha$$

$$K=\frac{1}{2}I_{CM}\omega^2+\frac{1}{2}Mv_{CM}^2=\frac{1}{2}I_P\omega^2$$

Note

$P$ is the point which is between the object and the surface, and it is at rest relative to the surface because slipping does not occur.

Angular momentum(角动量)

$$L=mvr\sin\theta=I\omega$$

Conservation of angular momentum(角动量守恒)

The total angular momentum of a system is constant in both magnitude and direction if the resultant external torque acting on the system is zero.

评论