Chapter7 Advanced Counting Techniques
7.1 Applications of Recurrence Relations
Degree:
The degree of a recurrence relation is the number of initial conditions needed to uniquely identify the sequence.
7.2 Solving Linear Recurrence Relations
Linear Homogeneous Recurrence Relations(线性齐次递归关系):
A linear homogeneous recurrence relation of degree $k$ with constant coefficients is a recurrence relation of the form
$$a_n=c_1a_{n-1}+c_2a_{n-2}+···+c_ka_{n-k}$$
where $c_1,c_2,···,c_k$ are real numbers, and $c_k\neq 0$.
Solving Linear Homogeneous Recurrence Relations:
Linear Nonhomogeneous Recurrence Relations with Constant Coefficients:
A linear nonhomogeneous recurrence relation with constant coefficients is a recurrence relation of the form
$$a_n=c_1a_{n-1}+c_2a_{n-2}+···+c_ka_{n-k}+F(n)$$
where $c_1,c_2,···,c_k$ are all real numbers, and $F(n)$ is a function not identically zero depending only on $n$.
7.3 Generating Functions(生成函数)
Generating Function:
The generating function for the sequence $a_0,a_1,···,a_k,···$ of real numbers is the finite series
$$G(x)=a_0+a_1x+···a_kx^k+···=\sum\limits_{k=0}^{\infty}a_kx^k$$
Extended Binomial Coefficients:
$$\begin{pmatrix} u\\ k \end{pmatrix}=\begin{cases} \frac{u(u-1)···(u-k+1)}{k!},k>0\\ 1,k=0 \end{cases}$$
Useful Generating Functions:
Sequence | Generating Function |
---|---|
$C_n^k$ | $(1+x)^n$ |
$C_n^ka^k$ | $(1+ax)^n$ |
$1,1,···,1$ | $\frac{1}{1-x}$ |
$a^k$ | $\frac{1}{1-ax}$ |
$k+1$ | $\frac{1}{(1-x)^2}$ |
$C_{n+k-1}^k$ | $(1-x)^{-n}$ |
$(-1)^kC_{n+k-1}^k$ | $(1+x)^{-n}$ |
$C_{n+k-1}^ka^k$ | $(1-ax)^{-n}$ |
$\frac{1}{k!}$ | $e^x$ |
$\frac{(-1)^{k+1}}{k}$ | $\ln(1+x)$ |
7.4 Inclusion-Exclusion
The Principle of Inclusion-Exclusion:
$$|A_1\cup A_2\cup ···\cup A_n|=\sum\limits_{1\leqslant i\leqslant n}|A_i|-\sum\limits_{1\leqslant i\leqslant j\leqslant n}|A_i\cap A_j|+\sum\limits_{1\leqslant i\leqslant j\leqslant k\leqslant n}|A_i\cap A_j\cap A_k|-···+(-1)^{n+1}|A_1\cap A_2\cap ···\cap A_n|$$
7.5 Applications of Inclusion-Exclusion
Derangement:
A derangement is a permutation of objects that leaves no object in the original position.
Example
The permutation of $21453$ is a derangement of $12345$ because no number is left in its original position. But $21543$ is not a derangement of $12345$ because $4$ is in its original position.
The number of derangements of a set with $n$ elements is
$$D_n=n![1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+···+(-1)^n\frac{1}{n!}]$$