跳转至

Chapter1 Logic and Proofs


1.1 Propositional Logic

Logical Connectives:

character abbreviation English Chinese
$\neg$ NOT negation 否定
$\wedge$ AND conjunction 合取
$\vee$ OR disjunction 析取
$\oplus$ XOR exclusive or operator 异或
$\rightarrow$ IF-THEN implication 蕴含
$\leftrightarrow$ IF AND ONLY IF biconditional 双条件命题

Implication:

p q p $\rightarrow$ q
T T T
T F F
F T T
F F T

Different Ways of Expressing $p\rightarrow q$:

  • $q$ unless $\neg p$
  • $p$ only if $q$
  • $p$ is sufficient for $q$
  • $q$ is necessary for $p$

Converse, Contrapositive and Inverse:

  • $q\rightarrow p$ is the converse(逆) of $p\rightarrow q$
  • $\neg q\rightarrow$$\neg p$ is the contrapositive(逆否) of $p\rightarrow q$
  • $\neg p\rightarrow$$\neg q$ is the inverse(反) of $p\rightarrow q$

Precedence of Logic Operators:

operator precedence
$\neg$ 1
$\wedge$ 2
$\vee$ 3
$\rightarrow$ 4
$\leftrightarrow$ 5

1.2 Applications of Propositional Logic

Consistence:

A list of propositions is consistent if it is possible to assign truth values to the proposition variables so that each proposition is true.

对于一连串的命题,可以找到一个变量的赋值方法,使得这些命题都为真。

Example

  • "The diagnostic message is stored in the buffer or it is retransmitted."
  • "The diagnostic message is not stored in the buffer."
  • "If the diagnostic message is stored in the buffer, then it is retransmitted."

$p$: "The diagnostic message is stored in the buffer"
$q$: "The diagnostic message is retransmitted"
When $p$ is false and $q$ is true, all three statements are true.
So the specification is consistent.


1.3 Propositional Equivalences

Tautologies, Contradictions and Contingencies:

  • tautology(永真式)
    永远为真的命题
  • contradiction(矛盾式)
    永远为假的命题
  • contingency(可能式)
    可能为真可能为假的命题

如果 $p\leftrightarrow q$ 为永真式,则 $p$ 和 $q$ 逻辑等价。

De Morgan's Laws:

  • $\neg(p\wedge q)\equiv\neg p\vee \neg q$
  • $\neg(p\vee q)\equiv\neg p\wedge \neg q$

Dual(对偶):

The dual of compound proposition that contains only the logical operators $\vee$, $\wedge$ and $\neg$ is the proposition obtained by replacing each $\vee$ by $\wedge$, each $\vee$ by $\wedge$, each $T$ by $F$ and each $F$ by $T$.

把 $\wedge$ 换成 $\vee$,把 $\vee$ 换成 $\wedge$,把 $T$ 换成 $F$ ,把 $F$ 换成 $T$,$\neg$ 不变,$S$ 的对偶式用 $S^*$ 表示。

$\downarrow$(或非), $|$(与非):

$\downarrow$ 就是或取反,$|$ 就是与取反。

$\{\neg,\vee\}$,$\{\neg,\wedge\}$,$\{|\}$,$\{\downarrow\}$分别都是功能齐全的运算符(functionally complete operators)。

Satisfiability:

A compound proposition is satisfiable if there is an assignment of truth values to its variables that make it true.

一个命题能找到某种变量的赋值方法,使得这个命题为真。

Normal Form(范式):

  • 析取范式(disjunctive normal form)
    每一项内部为与,再把每一项或起来
  • 合取范式(conjunctive normal form)
    子句内部为或,再把所有子句与起来

Example

(1) $p$
(2) $\neg p\vee q$
(3) $\neg p\wedge q\wedge \neg r$
(4) $\neg p\vee(q\wedge\neg r)$
(5) $\neg p\wedge(q\vee\neg r)\wedge(\neg q\vee r)$

(1),(2),(3),(5) are in conjunctive normal forms
(1),(2),(3),(4) are in disjunctive normal forms


1.4 Predicate and Quantifiers

Predicate, Quantifier and Uniqueness Quantifier:

  • predicate(谓词):$P(x)$

  • quantifier(量词):$\exists$,$\forall$

  • uniqueness quantifier(唯一性量词):$\exists !xP(x)$

Application:

Example

Example1:
“Every student in this class has taken a course in Java.”
$U$ is all people, $S(x)$ denotes “$x$ is a student in this class", $J(x)$ denotes “$x$ has taken a course in Java”
$\forall x(S(x)\rightarrow J(x))$

Example

Example2:
"Some student in this class has taken a course in Java.”
$U$ is all people, $S(x)$ denotes “$x$ is a student in this class", $J(x)$ denotes “$x$ has taken a course in Java”
$\exists x(S(x)\wedge J(x))$

De Morgan's Laws for Quantifiers:

  • $\neg\forall xP(x)\equiv\exists x\neg P(x)$
  • $\neg\exists xP(x)\equiv\forall x\neg P(x)$

1.5 Rule of Inference

Modus Ponens(假言推理):

$$(p\wedge(p\rightarrow q))\rightarrow q$$

Example

Let $p$ be “It is snowing.”
Let $q$ be “I will study discrete math.”

“If it is snowing, then I will study discrete math.”
“It is snowing.”
“Therefore , I will study discrete math."

Modus Tollens(取拒式):

$$\neg q\wedge(p\rightarrow q)\rightarrow p$$

Example

Let $p$ be “it is snowing.”
Let $q$ be “I will study discrete math.”

“If it is snowing, then I will study discrete math.”
“I will not study discrete math.”
“Therefore , it is not snowing.”

Hypothetical Syllogism(假言三段论):

$$((p\rightarrow q)\wedge(q\rightarrow r))\rightarrow(p\rightarrow r)$$

Example

Let $p$ be “it snows.”
Let $q$ be “I will study discrete math.”
Let $r$ be “I will get an A.”

“If it snows, then I will study discrete math.”
“If I study discrete math, I will get an A.”
“Therefore , If it snows, I will get an A.”

Disjunctive Syllogism(析取三段论):

$$(\neg p\wedge(p\vee q))\rightarrow q$$

Example

Let $p$ be “I will study discrete math.”
Let $q$ be “I will study English literature.”

“I will study discrete math or I will study English literature.”
“I will not study discrete math.”
“Therefore , I will study English literature.”

Resolution(消解律):

$$(\neg p\vee r)\wedge(p\vee q)\rightarrow(q\vee r)$$

Example

Let $p$ be “I will study discrete math.”
Let $r$ be “I will study English literature.”
Let $q$ be “I will study databases.”

“I will not study discrete math or I will study English literature.”
“I will study discrete math or I will study databases.”
“Therefore, I will study databases or I will English literature."


1.6 Introduction to Proofs

Terminologies:

  • theorem 定理
  • axiom 公理
  • lemma 引理
  • corollary 推论
  • conjecture 猜想

Proof:

  • Trivial Proof(平凡证明)
    如果已知 $q$ 为真,则 $p\rightarrow q$ 也为真
  • Vacuous Proof(空证明)
    如果已知 $p$ 为假,则 $p\rightarrow q$ 为真
  • Direct Proof(直接证明)
    假设 $p$ 为真,求证 $q$ 也为真
  • Proof by Contraposition(反证法)
    假设 $\neq q$ 为真,求证 $\neg p$ 也为真
  • Proof by Contradiction(归谬证明法)
    为了证明 $p$ 为真,假设 $\neg p$ 为真,推出矛盾

评论